
* *
* USER’S PERSPECTIVE -- An Introduction *
* *
* for *
* *
* ZCPR3 -- Z80 Command Processor Replacement, Version 3 *
* *

by

Richard Conn

User’s Perspective
11 June 1984

ZCPR3 Version 3.0

Copyright (c) 1984 by Richard Conn
All Rights Reserved

The ZCPR3 System, including its utilities and its
documentation files, is copyright, 1984, by Richard Conn. The
appendix lists all files covered by this copyright.

CP/M is a registered trademark of Digital Research.
WordStar is a registered trademark of Micropro.

1

ZCPR3 from the User’s Perspective

THE USER’S PERSPECTIVE - AN INTRODUCTION TO ZCPR3

by Richard Conn

The ZCPR3 System is a collection of programs based around
the ZCPR3 Command Processor. Forming an integrated system of
tools, the ZCPR3 System offers a number of convenient and
sometimes more user-friendly features to the CP/M 2.2 user.
Maintaining CP/M 2.2 compatibility at all times (all known
commercial CP/M 2.2 programs run under ZCPR3 without
modification), the ZCPR3 System brings to its users a variety of
tools which conceptually implement features found in other
operating systems, including TOPS-20 (1), UNIX (2), NOS (3),
MULTICS (4), and VMS (5), and tools which implement features
unique to the ZCPR3 System (to my knowledge).

This Introduction is intended to outline some of the key
features of the ZCPR3 System from the user’s perspective.
Knowledge of CP/M 2.2 is assumed, and some experience with ZCPR2
is useful in order to understand the following presentation in
detail. The major features of the ZCPR3 System which are
described in this Introduction include:

o Directories o Wheel Users and Passwords
o Command Lines o Command Processing
o Error Handlers o Resident Command Packages
o Aliases o Flow Command Packages
o "Secure" Systems o ZEX Command Files
o Shells o Z3TCAP

o Variable o Screen-Oriented Terminal
o MENU Configuration
o VFILER

The following screen displays are intended to convey ideas
only. These displays were generated while the ZCPR3 System was
being developed, and the version numbers and operation of the
ZCPR3 utilities as distributed differ from those shown in this
document.

---- Trademarks ----
(1) TOPS-20 - Digital Equipment Corporation
(2) UNIX - Bell Laboratories
(3) NOS - Control Data Corporation
(4) MULTICS - Honeywell
(5) VMS - Digital Equipment Corporation

ZCPR3 from the User’s Perspective

1. D i r e c t o r i e s

Under ZCPR3, a logical disk can be thought of
to contain two types of directories. One is the
physical directory, which is usually located just
after the system tracks on most floppies. The
other is the logical directory, in which each file
on a disk has a user number associated with it
(from 0 to 31), and the combination of a disk and
user number identifies uniquely the logical
directory in which the file belongs. DDT.COM may
be located on disk A, user 5, while two copies of
ED.COM may be located on disk A, user 5 and disk A,
user 0. The combination of the disk reference and
user number identifies the logical directory which
a file belongs in.

The logical directory is usually indicated as
part of the prompt. In the examples below, the
reader can see the logical directory referred to by
its disk and user number and, in most cases, by a
name associated with the disk and user number. The
following examples illustrate the use of the DU
(disk/user) form and the DIR (directory name) form
to log into various user areas and directories.

A0:BASE>15:
A15:ROOT>4:
A4>b:
B4:WORK4>0:
B0:WORK1>a14:
A14>a0:
A0:BASE>root:
A15:ROOT>work2:

Commands may use either the DU or DIR form to
reference the logical directories they are to act
upon. Interpretation of the name of a directory is
built into the ZCPR3 command processor itself, so
every command can work with the DU and DIR forms
with equal ease.

Commands like DBASE which don’t know about
the DU or DIR forms will usually just pay attention
to the disk referenced and not the user number.
For commands like these, it is usually best to just
employ the disk letter when referring to their
arguments.

ZCPR3 from the User’s Perspective

B1:WORK2>dir base:
RHEX .COM 2

A0:BASE -- 1 Files Using 2K (206K Left)

B1:WORK2>base:

The PWD command displays the names and
associated DU forms of all directories which
currently have names assigned to them.
Additionally, when using the DIR form to log into a
directory (see PRIVATE below), a directory so named
may have a password associated with it. If so, the
user is prompted for this password and the command
will fail if he does not provide the correct
password.

A0:BASE>pwd
PWD, Version 1.0
DU : DIR Name DU : DIR Name DU : DIR Name DU : DIR Name

---- -------- ---- -------- ---- -------- ---- --------
A 0: BASE A 1: PRIVATE A 15: ROOT

B 0: WORK1 B 1: WORK2 B 2: WORK3 B 4: WORK4
B 5: TEXT B 6: MAIL

A0:BASE>private:
PW? unknown

A0:BASE>private:
PW? mypass

A1:PRIVATE>dir
A1:PRIVATE -- 0 Files Using 0K (206K Left)

A1:PRIVATE>base:

A0:BASE>dir private:
PW? mypass

A1:PRIVATE -- 0 Files Using 0K (206K Left)
A0:BASE>dir a1:

A1:PRIVATE -- 0 Files Using 0K (206K Left)

ZCPR3 from the User’s Perspective

2. W h e e l U s e r s a n d P a s s w o r d s

Password protection is common under ZCPR3.
Several of the ZCPR3 utilities respond one way if
the user is priveleged (a Wheel) or not priveleged.
A user becomes priveleged by running the WHEEL
command and giving the Wheel Password.

A0:BASE>mkdir
MKDIR, Version 3.0
Permission to Run MKDIR Denied - Not Wheel

A0:BASE>pwd pass
PWD, Version 1.0
Password Request Denied - Not Wheel
DU : DIR Name DU : DIR Name DU : DIR Name DU : DIR Name

---- -------- ---- -------- ---- -------- ---- --------
A 0: BASE A 1: PRIVATE A 15: ROOT

B 0: WORK1 B 1: WORK2 B 2: WORK3 B 4: WORK4
B 5: TEXT B 6: MAIL

A0:BASE>wheel /s
WHEEL, Version 3.0
Wheel Password? Wheel Byte is ON

A0:BASE>pwd pass
PWD, Version 1.0
DU : DIR Name - Password DU : DIR Name - Password

---- -------- -------- ---- -------- --------
A 0: BASE - A 1: PRIVATE - MYPASS
A 15: ROOT -

B 0: WORK1 - B 1: WORK2 -
B 2: WORK3 - B 4: WORK4 -
B 5: TEXT - B 6: MAIL -

A0:BASE>private:
PW? mypass

A1:PRIVATE>root:

ZCPR3 from the User’s Perspective

A15:ROOT>mkdir sys.ndr
MKDIR, Version 3.0

MKDIR Command (? for Help)? C
** MKDIR Change Mode **
Directory Entry (?<RETURN> for Help)? a2:priv2

Adding PRIV2 -- Password? mypass2
10 Entries in Directory

Directory Entry (?<RETURN> for Help)?
DU : DIR Name - Password DU : DIR Name - Password

---- -------- -------- ---- -------- --------
A 0: BASE - A 1: PRIVATE - MYPASS
A 2: PRIV2 - MYPASS2 A 15: ROOT -

B 0: WORK1 - B 1: WORK2 -
B 2: WORK3 - B 4: WORK4 -
B 5: TEXT - B 6: MAIL -

Directory Entry (?<RETURN> for Help)? x
MKDIR Command (? for Help)? X

Directory has changed since last Write
Do you want to write Directory to Disk (Y/N)? Y

Name of File (<RETURN> = A 15: SYS .NDR)? special.ndr
Writing Directory to Disk ... Done

If a user knows the right passwords and has
the proper Wheel privelege, he can radically change
the directory structure, bringing new directories
which were previously undefined into existence.

The ability to log into a directory can be
controlled by the installer. At installation time,
the ability to use DU and DIR forms to log into
directories or reference directories can be
established. On a more secure system, for example,
the ability to use the DU form may be denied.
Then, only directories defined by name may be
accessed (DIR form), and, if these directories have
passwords associated with them, the proper
passwords must be given.

A15:ROOT>ldr special.ndr
ZCPR3 LDR, Version 1.0
Loading SPECIAL.NDR

ZCPR3 from the User’s Perspective

A15:ROOT>pwd
PWD, Version 1.0
DU : DIR Name DU : DIR Name DU : DIR Name DU : DIR Name

---- -------- ---- -------- ---- -------- ---- --------
A 0: BASE A 1: PRIVATE A 2: PRIV2 A 15: ROOT

B 0: WORK1 B 1: WORK2 B 2: WORK3 B 4: WORK4
B 5: TEXT B 6: MAIL

A15:ROOT>priv2:
PW? mypass2

A2:PRIV2>wheel system r
WHEEL, Version 3.0
Wheel Byte is OFF

A2:PRIV2>pwd pass
PWD, Version 1.0
Password Request Denied - Not Wheel
DU : DIR Name DU : DIR Name DU : DIR Name DU : DIR Name

---- -------- ---- -------- ---- -------- ---- --------
A 0: BASE A 1: PRIVATE A 2: PRIV2 A 15: ROOT

B 0: WORK1 B 1: WORK2 B 2: WORK3 B 4: WORK4
B 5: TEXT B 6: MAIL

ZCPR3 from the User’s Perspective

3. C o m m a n d L i n e s

The following terminal session extracts
should be clear about command lines under ZCPR3.
Comments are included in the terminal sessions.

A0:BASE>; Any Line beginning with a semicolon is a comment
A0:BASE>note Any line whose verb is the word "NOTE" is a comment
A0:BASE>note NOTE is handy to insert comments into lines with more than
A0:BASE>note one command in them
A0:BASE>note Such lines separate commands with a semicolon

A0:BASE>dir;note I just did a directory display
RHEX .COM 2

A0:BASE -- 1 Files Using 2K (204K Left)

A0:BASE>dir;NOTE This line contains 3 commands (incl one NOTE);dir root:
RHEX .COM 2

A0:BASE -- 1 Files Using 2K (204K Left)
MYTERM .Z3T 2r| SPECIAL .NDR 2 | SYS .ENV 2r| SYS .FCP 2r
SYS .NDR 2r| SYS .RCP 2r| SYS1 .FCP 2r| SYS1 .RCP 2r
SYS2 .FCP 2r| SYS2 .RCP 2r| SYS3 .RCP 2r| Z3TCAP .TCP 8r

A15:ROOT -- 12 Files Using 30K (204K Left)

A0:BASE>era *.com i;dir;NOTE See the extended options on the basic commands?
RHEX .COM - Erase (Y/N)? n
RHEX .COM 2

A0:BASE -- 1 Files Using 2K (204K Left)

ZCPR3 from the User’s Perspective

4. C o m m a n d P r o c e s s i n g

When a ZCPR3 user issues a command, a
sequence of events takes place in order to identify
that command and execute it.

This sequence is outlined briefly:

1) the command is parsed; the first word
in the command line (or subline if semicolons are
used to place several commands on one line) is
taken to be the name of the command

2) ZCPR3 checks to see if this command
is a Flow Command (IF/ELSE/FI/XIF), and, if so,
ZCPR3 runs the command

3) ZCPR3 then checks to see if the
current IF condition is TRUE; IFs may be nested
eight levels deep under ZCPR3; if the current IF
condition is TRUE, ZCPR3 continues, else it flushes
the command and goes on to the next command

4) ZCPR3 then checks to see if the
command is built into the ZCPR3 Command Processor
itself; if so, ZCPR3 runs the command

5) ZCPR3 then checks to see if the
command is built into the current Resident Command
Package (RCP); if so, ZCPR3 runs the command

6) ZCPR3 then searches along a series of
directories indicated by a command-search path for
a COM file with the same name as the command; if
found, ZCPR3 loads the COM file and runs it

7) finally, if all of the above fails,
ZCPR3 invokes an error handler or an extended
command processor to process the command as an
error or to try to resolve it further

Some examples:

A0:BASE>work2:

B1:WORK2>dir
B1:WORK2 -- 0 Files Using 0K (302K Left)

ZCPR3 from the User’s Perspective

B1:WORK2>NOTE in many ZCPR3 systems, you will find RCPs -
B1:WORK2>NOTE Resident Command Packages
B1:WORK2>NOTE this system has several, located in the ROOT
B1:WORK2>dir root:*.rcp
SYS .RCP 2r| SYS1 .RCP 2r| SYS2 .RCP 2r| SYS3 .RCP 2r

A15:ROOT -- 4 Files Using 8K (204K Left)

B1:WORK2>NOTE SYS.RCP is the default RCP I use
B1:WORK2>NOTE the H command tells the user what RCP he has loaded and
B1:WORK2>NOTE what commands are available in it
B1:WORK2>h
SYS 1.0A

CP ECHO ERA LIST
NOTE P POKE PROT
REN TYPE

B1:WORK2>NOTE there are 10 commands in this RCP
B1:WORK2>cp work2:=base:rhex.com
Done

B1:WORK2>dir
RHEX .COM 2

B1:WORK2 -- 1 Files Using 2K (300K Left)

B1:WORK2>cp rhex2.com=rhex.com
Done

B1:WORK2>dir
RHEX .COM 2 | RHEX2 .COM 2

B1:WORK2 -- 2 Files Using 4K (298K Left)

B1:WORK2>era *.com i
RHEX .COM - Erase (Y/N)? n
RHEX2 .COM - Erase (Y/N)? y

B1:WORK2>cp rhex1.com=rhex.com;cp rhex2.com=rhex.com
Done
Done

B1:WORK2>prot *.* r
RHEX .COM Set to R/O
RHEX1 .COM Set to R/O
RHEX2 .COM Set to R/O

B1:WORK2>dir
RHEX .COM 2r| RHEX1 .COM 2r| RHEX2 .COM 2r

B1:WORK2 -- 3 Files Using 6K (296K Left)

B1:WORK2>prot rhex1.com
RHEX1 .COM Set to R/W

ZCPR3 from the User’s Perspective

B1:WORK2>era *.com
RHEX .COM is R/O
RHEX1 .COM
RHEX2 .COM is R/O

B1:WORK2>dir
RHEX .COM 2r| RHEX2 .COM 2r

B1:WORK2 -- 2 Files Using 4K (298K Left)

B1:WORK2>echo this command simply echos the command line, as in messages
THIS COMMAND SIMPLY ECHOS THE COMMAND LINE, AS IN MESSAGES

B1:WORK2>ed demo.txt

NEW FILE
: *i
1: This is a test
2: This is only a test
3:
: *e

B1:WORK2>cp demo2.txt=demo.txt
Done

B1:WORK2>dir *.txt
DEMO .TXT 2 | DEMO2 .TXT 2

B1:WORK2 -- 2 Files Using 4K (294K Left)

B1:WORK2>ren demo1.txt=demo2.txt

B1:WORK2>cp demo2.txt=demo.txt
Done

B1:WORK2>dir *.txt
DEMO .TXT 2 | DEMO1 .TXT 2 | DEMO2 .TXT 2

B1:WORK2 -- 3 Files Using 6K (292K Left)

B1:WORK2>ren demo1.txt=demo2.txt
DEMO1 .TXT - Erase (Y/N)? n

B1:WORK2>type demo.txt

This is a test
This is only a test

ZCPR3 from the User’s Perspective

B1:WORK2>type *.txt

This is a test
This is only a test

Typing DEMO .TXT -

This is a test
This is only a test

Typing DEMO1 .TXT -

This is a test
This is only a test

B1:WORK2>p 8000 801f;NOTE I look at memory
Peek at 8000
8000 - C3 29 00 C3 CE 80 C3 47 81 C3 82 81 C3 67 81 C3 |C).CN.CG.C..Cg.C|
8010 - 7E 81 C3 E9 80 C3 22 81 C3 10 81 80 F3 00 00 11 |~.Ci.C".C...s...|

B1:WORK2>p 0 f;NOTE anywhere in memory
Peek at 0000
0000 - C3 03 E2 01 11 C3 06 D4 00 FF 00 FF 00 FF 00 FF |C.b..C.T........|

B1:WORK2>poke 8000 1 2 3 "this is a test
Poke at 8000

B1:WORK2>p 8000 801f
Peek at 8000
8000 - 01 02 03 54 48 49 53 20 49 53 20 41 20 54 45 53 |...THIS IS A TES|
8010 - 54 81 C3 E9 80 C3 22 81 C3 10 81 80 F3 00 00 11 |T.Ci.C".C...s...|

B1:WORK2>NOTE the RCP commands can be changed by loading a new RCP
B1:WORK2>ldr root:sys3.rcp
ZCPR3 LDR, Version 1.0
Loading SYS3.RCP

B1:WORK2>h
SYS 1.0C

CP ECHO ERA NOTE
P POKE REN TYPE
WHL WHLQ

B1:WORK2>cp demo3.txt=demo.txt
No Wheel

B1:WORK2>era *.txt
No Wheel

B1:WORK2>wheel system s
WHEEL, Version 3.0
Wheel Byte is ON

ZCPR3 from the User’s Perspective

B1:WORK2>cp demo3.txt=demo.txt
Done

Some examples of Flow Commands, invoked from
Flow Command Packages (FCPs) follow:

B1:WORK2>NOTE now for Flow Command Packages:
B1:WORK2>NOTE under FCPs, we have IF/ELSE/FI (ENDIF)/XIF (Exit All IFs)
B1:WORK2>NOTE Flow Commands:

B1:WORK2>if exist demo.txt
IF T

B1:WORK2>type demo.txt

This is a test
This is only a test

B1:WORK2>else
IF F

B1:WORK2>type demo2.txt

B1:WORK2>fi
To No IF

B1:WORK2>if ~exist demo.txt
IF F

B1:WORK2>type demo.txt

B1:WORK2>else
IF T

B1:WORK2>type demo2.txt

This is a test
This is only a test

B1:WORK2>fi
To No IF

B1:WORK2>if exist *.txt
IF T

B1:WORK2>type demo.txt

This is a test
This is only a test

ZCPR3 from the User’s Perspective

B1:WORK2>echo we are in a TRUE IF
WE ARE IN A TRUE IF

B1:WORK2>xif
To No IF

B1:WORK2>NOTE IFs can be nested up to 8 levels deep:
B1:WORK2>if exist demo.txt
IF T

B1:WORK2>if exist demo2.txt
IF T

B1:WORK2>if exist demo.txt
IF T

B1:WORK2>if exist demo3.txt
IF T

B1:WORK2>else
IF F

B1:WORK2>fi
To IF T

B1:WORK2>fi;fi;fi
To IF T
To IF T
To No IF

Command files and command file processors are
discussed next. ZEX, a memory-based command file
processor, is designed to be the principal tool
used.

B1:WORK2>NOTE ZEX is the command-file processor, memory-based
B1:WORK2>NOTE Under ZEX, there is a GOTO command which works
B1:WORK2>NOTE in conjunction with IFs to provide looping capability
B1:WORK2>ed demo.zex

NEW FILE
: *i
1: NOTE Set Register 1 to 0;reg s1 0
2: ;=loop
3: NOTE Exit all pending IFs;xif
4: NOTE Add 1 to Register 1;reg p1
5: NOTE Test for end of loop;if ~1 3
6: NOTE Branch to LOOP if Register 1 <> 3;goto loop
7: NOTE Done with IF if Register 1 = 3;fi
8:
: *e

ZCPR3 from the User’s Perspective

B1:WORK2>type demo.zex

NOTE Set Register 1 to 0;reg s1 0
;=loop
NOTE Exit all pending IFs;xif
NOTE Add 1 to Register 1;reg p1
NOTE Test for end of loop;if ~1 3
NOTE Branch to LOOP if Register 1 <> 3;goto loop
NOTE Done with IF if Register 1 = 3;fi

Here is an actual run of a ZEX command file
(DEMO.ZEX) which illustrates looping:

B1:WORK2>zex demo
ZEX, Version 3.0

-- Pass 1 --

B1:WORK2> ZEX: NOTE Set Register 1 to 0;reg s1 0
REG, Version 1.0
Reg 1 = 0

B1:WORK2> ZEX: ;=loop
B1:WORK2> ZEX: NOTE Exit all pending IFs;xif
To No IF

B1:WORK2> ZEX: NOTE Add 1 to Register 1;reg p1
REG, Version 1.0
Reg 1 = 1

B1:WORK2> ZEX: NOTE Test for end of loop;if ~1 3
IF T

B1:WORK2> ZEX: NOTE Branch to LOOP if Register 1 <> 3;goto loop
GOTO Label LOOP

-- Pass 2 --

B1:WORK2> ZEX: NOTE Exit all pending IFs;xif
To No IF

B1:WORK2> ZEX: NOTE Add 1 to Register 1;reg p1
REG, Version 1.0
Reg 1 = 2

B1:WORK2> ZEX: NOTE Test for end of loop;if ~1 3
IF T

B1:WORK2> ZEX: NOTE Branch to LOOP if Register 1 <> 3;goto loop
GOTO Label LOOP

ZCPR3 from the User’s Perspective

-- Pass 3 --

B1:WORK2> ZEX: NOTE Exit all pending IFs;xif
To No IF

B1:WORK2> ZEX: NOTE Add 1 to Register 1;reg p1
REG, Version 1.0
Reg 1 = 3

B1:WORK2> ZEX: NOTE Test for end of loop;if ~1 3
IF F

-- Done --

B1:WORK2> ZEX: NOTE Branch to LOOP if Register 1 <> 4;goto loop
B1:WORK2> ZEX: NOTE Done with IF if Register 1 = 3;fi
To No IF

B1:WORK2> ZEX: Done>

The example above was for academic purposes.
Two examples of ZEX command files which I use every
day follow. One command file assembles programs
for me using the MAC assembler, and the other uses
the M80 assembler with none, one, two, three, or
four libraries, generating different command lines
depending upon how many libraries were specified in
the original command line.

---- Command File for MAC Assembly ----

; MAC -- CP/M Standard MACRO Assembler and Loader
MAC $1 $$PZ SZ
IF INPUT Type N or F to Abort if Errors Exist
ERA $1.BAK
ERA $1.COM
MLOAD $1
FI
ERA $1.HEX
; Assembly Complete

ZCPR3 from the User’s Perspective

---- Command File for M80 Assembly ----

;
; M80.ZEX -- MACRO-80 Assembler and Linker
; Up to 4 Libraries Specified
;
; ^& Suppress FALSE IF Printout
;
if nul $1 ;note Print Error Message
echo **** No Parameter Specified ****
else ;note Perform Assembly
M80 =$1
if input Type T to Continue or F to Abort (in case of Errors)
ERA $1.BAK
ERA $1.COM
if ~nul $5 ;note Link 4 Additional Libraries
L80 /P:100,$1,$2/S,$3/S,$4/S,$5/S,A:Z3LIB/S,A:SYSLIB/S,$1/N,/U,/E
goto done
fi
if ~nul $4 ;note Link 3 Additional Libraries
L80 /P:100,$1,$2/S,$3/S,$4/S,A:Z3LIB/S,A:SYSLIB/S,$1/N,/U,/E
goto done
fi
if ~nul $3 ;note Link 2 Additional Libraries
L80 /P:100,$1,$2/S,$3/S,A:Z3LIB/S,A:SYSLIB/S,$1/N,/U,/E
goto done
fi
if ~nul $2 ;note Link 1 Additional Library
L80 /P:100,$1,$2/S,A:Z3LIB/S,A:SYSLIB/S,$1/N,/U,/E
goto done
else ;note Standard Link
L80 /P:100,$1,A:Z3LIB/S,A:SYSLIB/S,$1/N,/U,/E
;=done Done with Link
fi ;note on IF ~NUL Tests
fi ;note on IF INPUT
ERA $1.REL
fi ;note on IF NUL
;
; Assembly Complete
;

ZCPR3 from the User’s Perspective

5. E r r o r H a n d l e r s

Error Handlers are programs which handle
command line errors in a "nice" way. They may be
used anywhere, including within ZEX command files.
A few examples:

B1:WORK2>NOTE There are a number of error handlers on this system:
B1:WORK2>dir root:error?.com s
ERROR1 .COM 2r| ERROR2 .COM 4r| ERROR3 .COM 2r| ERROR4 .COM 2r

A15:ROOT -- 4 Files Using 10K (204K Left)

Error Handlers are installed by simply giving
their name.

B1:WORK2>error4
ERROR4, Version 1.0
Error Handler Installed

B1:WORK2>NOTE ERROR4 is a simpler error handler
B1:WORK2>NOTE with the invalid command "XXXX";xxxx

File XXXX.COM Not Found

B1:WORK2>NOTE ERROR4 simply says what happened

Error Handlers may vary in features and
complexity. ERROR1 is one of the more complex.
ERROR2, by the way, is a screen-oriented version of
ERROR1, using reverse video and cursor addressing.
See the section on Z3TCAP later for more details.

B1:WORK2>error1;NOTE ERROR1 is a more sophisticated error handler
ERROR1, Version 1.0
Error Handler Installed

ZCPR3 from the User’s Perspective

B1:WORK2>xxxx

ERROR1, Version 1.0

Error Line is:
XXXX

Options are:
1. Replace Command in Error with a New Command

Replace XXXX
2. Advance to Next Command and Resume Processing

Advance to
3. Replace Entire Line with a New Line

Replace XXXX
4. Throw Away Entire Line and Continue

Throw Away XXXX

Select Option - 1
Replacement Command?

dir
DEMO .BAK 0 | DEMO .TXT 2 | DEMO .ZEX 2 | DEMO1 .TXT 2
DEMO2 .TXT 2 | DEMO3 .TXT 2 | RHEX .COM 2r| RHEX2 .COM 2r

B1:WORK2 -- 8 Files Using 14K (288K Left)
B1:WORK2>xxxx;dir *.com

ERROR1, Version 1.0

Error Line is:
XXXX;DIR *.COM

Options are:
1. Replace Command in Error with a New Command

Replace XXXX
2. Advance to Next Command and Resume Processing

Advance to DIR *.COM
3. Replace Entire Line with a New Line

Replace XXXX;DIR *.COM
4. Throw Away Entire Line and Continue

Throw Away XXXX;DIR *.COM

Select Option - 2

RHEX .COM 2r| RHEX2 .COM 2r
B1:WORK2 -- 2 Files Using 4K (288K Left)

ZCPR3 from the User’s Perspective

6. A l i a s e s

Aliases are COM files created by the ALIAS
command which contain one or more command lines
which are invoked when the Alias name is typed.
Parameter passing into the command lines within an
Alias is supported in a manner similar to command
file parameter passing. Aliases are convenient to
create command scripts which are used repeatedly,
and the special commands, such as STARTUP (used on
cold boot to run a series of programs to initialize
the system), are created as Aliases.

B1:WORK2>NOTE you have to be a WHEEL to create ALIASes
B1:WORK2>wheel /s
WHEEL, Version 3.0
Wheel Password? Wheel Byte is ON

B1:WORK2>NOTE a number of parameters and some information can be determined
B1:WORK2>NOTE and expanded by an alias
B1:WORK2>alias
ALIAS, Version 1.0

Input Alias (RETURN to Abort)
--> echo The name of this Alias is $0; <-- I ended these

echo The current DU is du:; <-- lines with ^E
echo and the first 4 parameters are:;
echo $1 $2 $3 $4
Name of ALIAS Command (RETURN to Abort)? cmdstat
Alias Created

B1:WORK2>NOTE the alias is a very short file (under 2K)
B1:WORK2>dir cmdstat.com
CMDSTAT .COM 2

B1:WORK2 -- 1 Files Using 2K (292K Left)

B1:WORK2>cmdstat

THE NAME OF THIS ALIAS IS CMDSTAT
THE CURRENT DU IS B1:
AND THE FIRST 4 PARAMETERS ARE:

B1:WORK2>cmdstat this is a very short demo

THE NAME OF THIS ALIAS IS CMDSTAT
THE CURRENT DU IS B1:
AND THE FIRST 4 PARAMETERS ARE:
THIS IS A VERY

ZCPR3 from the User’s Perspective

B1:WORK2>cmdstat hello, world

THE NAME OF THIS ALIAS IS CMDSTAT
THE CURRENT DU IS B1:
AND THE FIRST 4 PARAMETERS ARE:
HELLO, WORLD

B1:WORK2>NOTE aliases are convenient for a number of things --
B1:WORK2>NOTE they are intended primarily to replace tedious command
B1:WORK2>NOTE sequences with a simple command
B1:WORK2>alias
ALIAS, Version 1.0

Input Alias (RETURN to Abort)
--> dir $1;era $1 i;dir $1
Name of ALIAS Command (RETURN to Abort)? exera
Alias Created

B1:WORK2>NOTE I now have an ALIAS which displays a directory of selected
B1:WORK2>NOTE files, allows me to erase them with inspection, and then
B1:WORK2>NOTE displays the same directory again to let me see the
B1:WORK2>NOTE results
B1:WORK2>dir
CMDSTAT .COM 2 | DEMO .TXT 2 | DEMO .ZEX 2 | DEMO1 .TXT 2
DEMO2 .TXT 2 | DEMO3 .TXT 2 | EXERA .COM 2 | RHEX .COM 2r
RHEX2 .COM 2r

B1:WORK2 -- 9 Files Using 18K (284K Left)

The following runs an Alias:

B1:WORK2>exera demo?.txt

DEMO .TXT 2 | DEMO1 .TXT 2 | DEMO2 .TXT 2 | DEMO3 .TXT 2
B1:WORK2 -- 4 Files Using 8K (284K Left)

DEMO .TXT - Erase (Y/N)? n
DEMO1 .TXT - Erase (Y/N)? y
DEMO2 .TXT - Erase (Y/N)? y
DEMO3 .TXT - Erase (Y/N)? n
DEMO .TXT 2 | DEMO3 .TXT 2

B1:WORK2 -- 2 Files Using 4K (288K Left)

B1:WORK2>exera demo3.txt

DEMO3 .TXT 2
B1:WORK2 -- 1 Files Using 2K (288K Left)

DEMO3 .TXT - Erase (Y/N)? y
B1:WORK2 -- 0 Files Using 0K (290K Left)

ZCPR3 from the User’s Perspective

B1:WORK2>NOTE also, since IFs are everywhere, they can be used in aliases:
B1:WORK2>alias
ALIAS, Version 1.0

Input Alias (RETURN to Abort)
--> if exist $1;type $1 p;fi
Name of ALIAS Command (RETURN to Abort)? typeit
Alias Created

B1:WORK2>typeit demo.txt

IF T

This is a test
This is only a test

To No IF

B1:WORK2>cp demo1.txt=demo.txt
Done

B1:WORK2>dir demo?.txt
DEMO .TXT 2 | DEMO1 .TXT 2

B1:WORK2 -- 2 Files Using 4K (286K Left)

B1:WORK2>typeit demo?.txt

IF T

This is a test
This is only a test

Typing DEMO .TXT -

This is a test
This is only a test

To No IF

B1:WORK2>typeit nofile.txt

IF F
To No IF

ZCPR3 from the User’s Perspective

B1:WORK2>NOTE or I can expand TYPEIT to be better
B1:WORK2>alias typeit
ALIAS, Version 1.0
Alias Name: TYPEIT
Old Alias Command Line:
1 --> IF EXIST $1;
2 --> TYPE $1 P;
3 --> FI

Input Alias (RETURN to Abort)
--> if exist $1;type $1 p;else;echo file $1 not found;fi
File TYPEIT .COM Exists - Overwrite (Y/N)? Y

Alias Created

B1:WORK2>typeit demo.txt

IF T

This is a test
This is only a test

IF F
To No IF

B1:WORK2>typeit nofile.txt

IF F
IF T

FILE NOFILE.TXT NOT FOUND
To No IF

ZCPR3 from the User’s Perspective

7. S h e l l s

ZCPR3 Shells are front-ends which provide a
user interface in place of the normal ZCPR3 prompt.
The following terminal sessions show the MENU and
SH shells in action.

B1:WORK2>NOTE Shells are Front-End Processors which can run in place
B1:WORK2>NOTE of the ZCPR3 Command Processor
B1:WORK2>NOTE Actually, the ZCPR3 Command Processor is still being
B1:WORK2>NOTE used, but it is transparent to the user now
B1:WORK2>NOTE Two shells I am going to demonstrate now are MENU and
B1:WORK2>NOTE SH:

B1:WORK2>dir root:menu.* a;dir root:sh*.* a
MENU .COM 4r

A15:ROOT -- 1 Files Using 4K (204K Left)
SH .COM 4r| SHDEFINE.COM 4r| SHFILE .COM 2r| SHOW .COM 4r
SHVAR .COM 4r

A15:ROOT -- 5 Files Using 18K (204K Left)

B1:WORK2>NOTE The MENU shell consists of only MENU.COM
B1:WORK2>NOTE The SH shell is SH.COM, but can use SHDEFINE, SHFILE, and SHVAR
B1:WORK2>NOTE for support
B1:WORK2>NOTE First, MENU:

B1:WORK2>ed menu.cpr

NEW FILE
: *i
1: -dx
2: #
3: Sample Menu
4: D - Directory Display
5: Z - Run Any ZCPR3 Command
6:
7: 1 - Set Name of Working File (Currently $f1)
8: 2 - Edit Working File
9: 3 - Type Working File

10: #
11: d!dir
12: z!"Enter Command Line -- "
13: 1setfile 1 "Enter File Name -- "
14: 2ed $f1
15: 3!type $f1
16: ##
17:
: *e

ZCPR3 from the User’s Perspective

To run the MENU shell, just give its name.

B1:WORK2>menu
Shell Installed

MENU Version 3.0
Sample Menu

D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently .)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - D
CMDSTAT .COM 2 | MENU .BAK 0 | DEMO .TXT 2 | DEMO .ZEX 2
DEMO1 .TXT 2 | EXERA .COM 2 | MENU .CPR 2 | RHEX .COM 2r
RHEX2 .COM 2r| TYPEIT .COM 2

B1:WORK2 -- 10 Files Using 18K (284K Left)

MENU Version 3.0 Strike Any Key -

Sample Menu
D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently .)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - Z
Enter Command Line -- dir *.com;era *.com i
CMDSTAT .COM 2 | EXERA .COM 2 | RHEX .COM 2r| RHEX2 .COM 2r
TYPEIT .COM 2

B1:WORK2 -- 5 Files Using 10K (284K Left)
CMDSTAT .COM - Erase (Y/N)? y
EXERA .COM - Erase (Y/N)? y
RHEX .COM is R/O
RHEX2 .COM is R/O
TYPEIT .COM - Erase (Y/N)? y

MENU Version 3.0 Strike Any Key -

Sample Menu
D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently .)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - Z
Enter Command Line -- prot rhex?.com;era rhex?.com
RHEX .COM Set to R/W
RHEX2 .COM Set to R/W
RHEX .COM
RHEX2 .COM

MENU Version 3.0 Strike Any Key -

Sample Menu

Shells 24

ZCPR3 from the User’s Perspective

D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently .)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - D
DEMO .BAK 0 | DEMO .TXT 2 | DEMO .ZEX 2 | DEMO1 .TXT 2
MENU .CPR 2

B1:WORK2 -- 5 Files Using 8K (294K Left)

MENU supports up to 4 file names which can be
used as variables within MENU. The common
application is to use these files names to specify
working files.

MENU Version 3.0 Strike Any Key -

Sample Menu
D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently .)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - 1
Enter File Name -- myfile.txt
SETFILE, Version 1.0
File Name 1 is MYFILE .TXT

MENU Version 3.0
Sample Menu

D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - 2

NEW FILE
: *i
1: This is MYFILE.TXT
2: Isn’t this fun?
3:
: *b0p
1: This is MYFILE.TXT
2: Isn’t this fun?
1: *e

MENU Version 3.0
Sample Menu

D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File

Shells 25

ZCPR3 from the User’s Perspective

3 - Type Working File
Command (<CR>=Menu, ^C=ZCPR3) - 3

This is MYFILE.TXT
Isn’t this fun?

MENU Version 3.0 Strike Any Key -

Sample Menu
D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - 2
: *#a
1: *i
1: I have modified MYFILE.TXT
2:
2: *b0p
1: I have modified MYFILE.TXT
2: This is MYFILE.TXT
3: Isn’t this fun?
1: *e

MENU Version 3.0
Sample Menu

D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - 3

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

ZCPR3 from the User’s Perspective

MENU Version 3.0 Strike Any Key -

Sample Menu
D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - ^C
B1:WORK2>

ZCPR3 from the User’s Perspective

The following is a demonstration of the ZCPR3
Named-Variable Shell, SH. SH allows, among other
things, the user to specify variables in his
command lines which are expanded as macros when the
command lines are interpreted by SH. SH then
passes the expanded command lines to the ZCPR3
Command Processor, which executes them.

B1:WORK2>NOTE Now I will demonstrate SH
B1:WORK2>sh
Shell Installed
B1:WORK2>> ;first, SH looks like the normal ZCPR3, except that the
B1:WORK2>> ;prompt is >>
B1:WORK2>>
B1:WORK2>> ;commands run normally under SH:

B1:WORK2>> dir *.txt
DEMO .TXT 2 | DEMO1 .TXT 2 | MYFILE .TXT 2

B1:WORK2 -- 3 Files Using 6K (292K Left)

B1:WORK2>> error4
ERROR4, Version 1.0
Error Handler Installed

B1:WORK2>> NOTE Shells, like many things under ZCPR3, can be nested:
B1:WORK2>> menu
Shell Installed

MENU Version 3.0
Sample Menu

D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - 3

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

MENU Version 3.0 Strike Any Key -

Sample Menu
D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - Z
Enter Command Line -- NOTE and, when I exit, I’m back to SH

ZCPR3 from the User’s Perspective

MENU Version 3.0 Strike Any Key -

Sample Menu
D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - ^C

B1:WORK2>> ; SH has some built-in commands, which can be determined by
B1:WORK2>> ; a ? command:
B1:WORK2>> ?
SH Commands --

? SHCMT SHECHO SHEXIT

B1:WORK2>> ; guess what SHEXIT does:
B1:WORK2>> shexit
Exiting Shell

B1:WORK2>NOTE oh, well, back to ZCPR3 ... but we were talking
B1:WORK2>NOTE about SH:
B1:WORK2>sh
Shell Installed

B1:WORK2>> ; SHCMT is intended to switch SH into a comment
B1:WORK2>> ; mode, for times like this when I want to record
B1:WORK2>> ; a lot of text and a few commands:
B1:WORK2>> shcmt

B1:WORK2; note that the prompt is now "B1:WORK2; "
B1:WORK2; I don’t have to type the leading ; or the word NOTE
B1:WORK2;
B1:WORK2; If I want to execute a command, I simply prefix it with
B1:WORK2; an exclamation mark:
B1:WORK2; !dir *.txt
DEMO .TXT 2 | DEMO1 .TXT 2 | MYFILE .TXT 2

B1:WORK2 -- 3 Files Using 6K (292K Left)

B1:WORK2; !menu
Shell Installed

MENU Version 3.0
Sample Menu

D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - 3

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

Shells 29

ZCPR3 from the User’s Perspective

MENU Version 3.0 Strike Any Key -

Sample Menu
D - Directory Display
Z - Run Any ZCPR3 Command

1 - Set Name of Working File (Currently MYFILE.TXT)
2 - Edit Working File
3 - Type Working File

Command (<CR>=Menu, ^C=ZCPR3) - ^C

B1:WORK2; and we are back:
B1:WORK2; !?
SH Commands --

? SHCMT SHECHO SHEXIT

B1:WORK2; all commands work that way under SH
B1:WORK2; as I mentioned, SH is a Variable Shell
B1:WORK2; by this I mean that it supports named variables, which
B1:WORK2; can be defined (in groups) by SHDEFINE or one at a time
B1:WORK2; by SHVAR
B1:WORK2;
B1:WORK2; SHVAR with no args displays the names of the current
B1:WORK2; variables
B1:WORK2; !shvar
SHVAR, Version 1.0
Shell Variables --
-- No Variables Defined --

B1:WORK2;
B1:WORK2; with an arg (actually, 2 args), SHVAR defines variables
B1:WORK2; !shvar file1 myfile.txt
SHVAR, Version 1.0
Shell Variable FILE1 = MYFILE.TXT
Writing Shell Variable File SH .VAR

B1:WORK2;
B1:WORK2; and now I can reference variables by preceeding them with
B1:WORK2; a % character
B1:WORK2; !type %file1

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

ZCPR3 from the User’s Perspective

B1:WORK2; does the same as
B1:WORK2; !type myfile.txt

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

B1:WORK2; note that SH variables can only be used under SH
B1:WORK2; don’t confuse these with aliases, which can be used
B1:WORK2; anywhere, including under SH
B1:WORK2; !alias
ALIAS, Version 1.0

Input Alias (RETURN to Abort)
--> echo hello, world - my name is $0
Name of ALIAS Command (RETURN to Abort)? hello
Alias Created

B1:WORK2; !hello

HELLO, WORLD - MY NAME IS HELLO

B1:WORK2; !shexit
Exiting Shell

B1:WORK2>hello

HELLO, WORLD - MY NAME IS HELLO

B1:WORK2>sh
Shell Installed

B1:WORK2>> shcmt
B1:WORK2; also, SH variables can be referenced by other SH variables,
B1:WORK2; up to 20 levels deep:
B1:WORK2; !shvar cmddemo type %%file1
SHVAR, Version 1.0
Shell Variable CMDDEMO = TYPE %FILE1
Writing Shell Variable File SH .VAR

B1:WORK2; note my use of the double %% to indicate that I wanted
B1:WORK2; the % character substituted -- If I used just 1 %, then
B1:WORK2; the value of the variable would be substituted:

B1:WORK2; !shvar cmddemo1 type %file1
SHVAR, Version 1.0
Shell Variable CMDDEMO1 = TYPE MYFILE.TXT
Writing Shell Variable File SH .VAR

ZCPR3 from the User’s Perspective

B1:WORK2; see the difference?
B1:WORK2; so, to execute:
B1:WORK2; !%cmddemo

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

B1:WORK2; !%cmddemo1

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

B1:WORK2; as a side comment, the SHECHO command can be used to make
B1:WORK2; SH show you the command line it is generating:
B1:WORK2; !shecho
Echo of Shell Commands is ON

B1:WORK2; !%cmddemo
TYPE MYFILE.TXT

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

B1:WORK2; Now, if I change the definition of FILE1:
B1:WORK2; !shvar file1 hisfile.txt
SHVAR FILE1 HISFILE.TXT
SHVAR, Version 1.0
Shell Variable FILE1 = HISFILE.TXT
Writing Shell Variable File SH .VAR

B1:WORK2; the meaning of CMDDEMO is different:
B1:WORK2; !%cmddemo
TYPE HISFILE.TXT
No Files

B1:WORK2; while CMDDEMO1 remains unchanged
B1:WORK2; !%cmddemo1
TYPE MYFILE.TXT

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

ZCPR3 from the User’s Perspective

B1:WORK2; !ed %file1
ED HISFILE.TXT

NEW FILE
: *i
1: This is HISFILE.TXT
2:
: *e

B1:WORK2; !%cmddemo;%cmddemo1
TYPE HISFILE.TXT;TYPE MYFILE.TXT

This is HISFILE.TXT

I have modified MYFILE.TXT
This is MYFILE.TXT
Isn’t this fun?

B1:WORK2; and so on ...

B1:WORK2; !shexit
Exiting Shell
B1:WORK2>

ZCPR3 from the User’s Perspective

8. Z 3 T C A P

The ZCPR3 TCAP (Terminal Capability) Facility
(Z3TCAP) allows ZCPR3 to have a variety of easily-
transportable screen-oriented utilities. ERROR2,
VFILER, SHOW, and VMENU are such utilities found
under the ZCPR3 System.

B1:WORK2>NOTE The ZCPR3 TCAP (Z3TCAP) facility is supported by
B1:WORK2>NOTE three programs and one data file:
B1:WORK2>dir root:tc*.com a;dir root:*.tcp
TCCHECK .COM 2r| TCMAKE .COM 6r| TCSELECT.COM 4r

A15:ROOT -- 3 Files Using 12K (202K Left)
Z3TCAP .TCP 8r

A15:ROOT -- 1 Files Using 8K (202K Left)

B1:WORK2>NOTE TCCHECK is used to check the validity of Z3TCAP.TCP:
B1:WORK2>root:
A15:ROOT>tccheck
TCCHECK, Version 1.0
Z3TCAP File Check of Z3TCAP .TCP Version 1.0

File Checks with 43 Terminals Defined

Over forty terminals are currently supported
under the Z3TCAP. Their selection and installation
into a ZCPR3 System is illustrated:

A15:ROOT>work2:
B1:WORK2>NOTE TCSELECT is used to select your terminal from one of the
B1:WORK2>NOTE terminals in Z3TCAP.TCP:

ZCPR3 from the User’s Perspective

B1:WORK2>tcselect myterm
TCSELECT, Version 1.0

** Terminal Menu 1 for Z3TCAP Version 1.0 **

A. AA Ambassador K. Concept 100
B. ADDS Consul 980 L. Concept 108
C. ADDS Regent 20 M. CT82
D. ADDS Viewpoint N. DEC VT52
E. ADM 2 O. DEC VT100
F. ADM 31 P. Dialogue 80
G. ADM 3A Q. Direct 800/A
H. ADM 42 R. General Trm 100A
I. Bantam 550 S. Hazeltine 1420
J. CDC 456 T. Hazeltine 1500

Enter Selection, + for Next, or ^C to Exit - +

** Terminal Menu 2 for Z3TCAP Version 1.0 **

A. Hazeltine 1510 K. SOROC 120
B. Hazeltine 1520 L. Super Bee
C. Heathkit H19 M. TAB 132
D. HP 2621 N. Teleray 1061
E. IBM 3101 O. Teleray 3800
F. Micro Bee P. TTY 4424
G. Microterm ACT IV Q. TVI 912
H. Microterm ACT V R. TVI 920
I. P Elmer 1100 S. TVI 950
J. P Elmer 1200 T. VC 404

Enter Selection, - for Last, + for Next, or ^C to Exit - +

** Terminal Menu 3 for Z3TCAP Version 1.0 **

A. VC 415
B. Visual 200
C. WYSE 50

ZCPR3 from the User’s Perspective

Enter Selection, - for Last, or ^C to Exit - -

** Terminal Menu 2 for Z3TCAP Version 1.0 **

A. Hazeltine 1510 K. SOROC 120
B. Hazeltine 1520 L. Super Bee
C. Heathkit H19 M. TAB 132
D. HP 2621 N. Teleray 1061
E. IBM 3101 O. Teleray 3800
F. Micro Bee P. TTY 4424
G. Microterm ACT IV Q. TVI 912
H. Microterm ACT V R. TVI 920
I. P Elmer 1100 S. TVI 950
J. P Elmer 1200 T. VC 404

Enter Selection, - for Last, + for Next, or ^C to Exit - S

Selected Terminal is: TVI 950 -- Confirm (Y/N)? Y

File MYTERM .Z3T Created
B1:WORK2>dir *.z3t
MYTERM .Z3T 2

B1:WORK2 -- 1 Files Using 2K (286K Left)

B1:WORK2>NOTE Once you have a Z3T file, LDR can load it and, at this
B1:WORK2>NOTE time (after loading), your terminal will be known
B1:WORK2>NOTE to the ZCPR3 system and the ZCPR3 utilities can
B1:WORK2>NOTE make use of its features, such as cursor positioning,
B1:WORK2>NOTE reverse video, arrow keys, etc
B1:WORK2>ldr myterm.z3t
ZCPR3 LDR, Version 1.0
Loading MYTERM.Z3T

B1:WORK2>NOTE The commands SHOW and VFILER are now configured for
B1:WORK2>NOTE a TVI 950, as per my selection

Not everyone’s terminal will be in the
default Z3TCAP. To meet this problem, the utility
TCMAKE is available.

B1:WORK2>NOTE If you terminal is not on the list of terminals in
B1:WORK2>NOTE Z3TCAP.TCP, then TCMAKE can be used to define it
B1:WORK2>NOTE I will define my TVI 950 here:

ZCPR3 from the User’s Perspective

B1:WORK2>tcmake myterm1
TCMAKE, Version 1.0

** Z3TCAP Main Menu for File MYTERM1 .Z3T **

Define: 1. Clear Screen Sequence
2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences
5. Terminal Init/Deinit Sequences
6. Arrow Keys
7. Terminal Name

Status: S. Print Status (Definitions so far)

Exit: X. Exit and Write File
Q. Quit and Abort Program without Writing File

Command? 1

I won’t bore you with details here. The
terminal session is quite long, illustrating the
major features of TCMAKE.

ZCPR3 from the User’s Perspective

9. " S e c u r e " S y s t e m s

With password protecton and named directories
(DIR form) built into ZCPR3, ZCPR3 offers a much
more secure environment than CP/M. In particular,
if the DU form is disabled, the only directories a
user can access are those he can name, and some of
those may have password protections on them.

Here is a complete session:

AMPRO 51K TPA CP/M 2.2 with ZCPR 3.0
BIOS Version 1.2 on March 24, 1984

ZCPR3 LDR, Version 1.0
Loading SYS.ENV
Loading SYS.NDR
Loading SYS.FCP
Loading SYS.RCP

ERROR4, Version 1.0
Error Handler Installed
WELCOME TO ZCPR III

BASE>dir
AMPZ358R.COM 10 | SYS3R .RCP 2

A0:BASE -- 2 Files Using 12K (266K Left)

BASE>pwd
PWD, Version 1.0
DU : DIR Name DU : DIR Name DU : DIR Name DU : DIR Name

---- -------- ---- -------- ---- -------- ---- --------
A 0: BASE A 1: PRIVATE1 A 2: PRIVATE2 A 15: ROOT

B 0: DEMO1 B 1: DEMO2 B 2: DEMO3 B 3: DEMO4
B 4: DEMO5 B 5: INTRO B 6: MAIL

BASE>dir root:
PW? unknown
AMPZ358R.COM 10 | SYS3R .RCP 2

A0:BASE -- 2 Files Using 12K (266K Left)

BASE>dir root:
PW? rpass
DIR .COM 2 | ERROR4 .COM 2 | GOTO .COM 2 | LDR .COM 4
MENU .COM 4 | MKDIR .COM 6 | PWD .COM 2 | SETFILE .COM 2
SH .COM 4 | SHDEFINE.COM 4 | SHFILE .COM 2 | SHOW .COM 4
SHVAR .COM 4 | SPECIAL .NDR 2 | STARTUP .COM 2 | SYS .ENV 2
SYS .FCP 2 | SYS .NDR 2 | SYS .RCP 2 | TCCHECK .COM 2
TCMAKE .COM 6 | TCSELECT.COM 4 | WHEEL .COM 2 | Z3TCAP .TCP 8
ZEX .COM 6

A15:ROOT -- 25 Files Using 82K (266K Left)
BASE>xxx

File XXX.COM Not Found

Note that the DU form is simply ignored. No

"Secure" Systems 38

ZCPR3 from the User’s Perspective

change to files or directory location is made.

BASE>1:
BASE>a:
BASE>b:
BASE>dir 1:
AMPZ358R.COM 10 | SYS3R .RCP 2

A0:BASE -- 2 Files Using 12K (266K Left)

BASE>dir demo1:
AMPZ3-58.COM 10 | AMPZ3-60.COM 10 | AMPZ3-61.COM 10 | AMPZ358R.COM 10
BDOS58 .COM 4 | BDOS60 .COM 4 | BDOS61 .COM 4 | CPM58 .COM 10
CPM60 .COM 10 | CPM61 .COM 10 | SYS3R .RCP 2

B0:DEMO1 -- 11 Files Using 84K (284K Left)

BASE>demo1:
DEMO1>root:
PW? rpass

ROOT>wheel /s
WHEEL, Version 3.0
Wheel Password? Wheel Byte is ON

ROOT>NOTE We now have one directory structure:
ROOT>pwd
PWD, Version 1.0
DU : DIR Name DU : DIR Name DU : DIR Name DU : DIR Name

---- -------- ---- -------- ---- -------- ---- --------
A 0: BASE A 1: PRIVATE1 A 2: PRIVATE2 A 15: ROOT

B 0: DEMO1 B 1: DEMO2 B 2: DEMO3 B 3: DEMO4
B 4: DEMO5 B 5: INTRO B 6: MAIL

With the ability to have several named
directory files, we can have several sets of
directories, including some directories which are
both hidden and totally inaccessable to the user
unless he has the ability to load the proper named
directory (NDR) file.

ROOT>NOTE Now that I am a WHEEL and in ROOT, I can define another
ROOT>NOTE directory structure which is special:

ZCPR3 from the User’s Perspective

ROOT>ldr special.ndr
ZCPR3 LDR, Version 1.0
Loading SPECIAL.NDR

ROOT>pwd
PWD, Version 1.0
DU : DIR Name DU : DIR Name DU : DIR Name DU : DIR Name

---- -------- ---- -------- ---- -------- ---- --------
A 0: BASE A 1: PRIVATE1 A 2: PRIVATE2 A 14: SYSROOT
A 15: ROOT

B 0: DEMO1 B 1: DEMO2 B 2: DEMO3 B 3: DEMO4
B 4: DEMO5 B 5: INTRO B 6: MAIL

ROOT>NOTE Note that there is a 2nd root, called SYSROOT, which
ROOT>NOTE was not known (OR ACCESSIBLE) under the old system
ROOT>NOTE (SYS.NDR)
ROOT>

ROOT>NOTE Also, as a wheel, I can obtain passwords:

ROOT>pwd pass
PWD, Version 1.0
DU : DIR Name - Password DU : DIR Name - Password

---- -------- -------- ---- -------- --------
A 0: BASE - A 1: PRIVATE1 - MYPASS1
A 2: PRIVATE2 - PASS A 14: SYSROOT - SPASS
A 15: ROOT - RPASS

B 0: DEMO1 - B 1: DEMO2 -
B 2: DEMO3 - B 3: DEMO4 -
B 4: DEMO5 - B 5: INTRO -
B 6: MAIL - MPASS

ROOT>private1:
PW? mypass1
PRIVATE1>wheel /r
WHEEL, Version 3.0
Wheel Password? Wheel Byte is OFF

PRIVATE1>pwd pass
PWD, Version 1.0
Password Request Denied - Not Wheel
DU : DIR Name DU : DIR Name DU : DIR Name DU : DIR Name

---- -------- ---- -------- ---- -------- ---- --------
A 0: BASE A 1: PRIVATE1 A 2: PRIVATE2 A 14: SYSROOT
A 15: ROOT

B 0: DEMO1 B 1: DEMO2 B 2: DEMO3 B 3: DEMO4
B 4: DEMO5 B 5: INTRO B 6: MAIL

ZCPR3 from the User’s Perspective

PRIVATE1>ldr root:sys.ndr
PW? rpass
ZCPR3 LDR, Version 1.0
Loading SYS.NDR

PRIVATE1>ldr root:special.ndr
PW? rpass
ZCPR3 LDR, Version 1.0
Loading SPECIAL.NDR

PRIVATE1>sysroot:
PW? spass

SYSROOT>root:
PW? rpass

ROOT>ldr sys.ndr
ZCPR3 LDR, Version 1.0
Loading SYS.NDR

ROOT>sysroot:
ROOT>NOTE SYSROOT is not even defined now

---- End of Introduction to ZCPR3 ----

"Secure" Systems 41

ZCPR3 from the User’s Perspective

A
Aliases, 19

C
Command Lines, 7
Command Processing, 8

D
Directories, 2

E
Error Handlers, 17

S
"Secure" Systems, 38
Shells, 23

W
Wheel Users and Passwords, 4

Z
Z3TCAP, 34

"Secure" Systems 42

ZCPR3 from the User’s Perspective

T A B L E O F C O N T E N T S

1. Directories..2

2. Wheel Users and Passwords..................................4

3. Command Lines..7

4. Command Processing...8

5. Error Handlers..17

6. Aliases...19

7. Shells..23

8. Z3TCAP..34

9. "Secure" Systems..38

"Secure" Systems 43

	Table of Contents
	Introduction
	Directories
	Wheel Users and Password
	Command Lines
	Command Processing
	Error Handlers
	Aliases
	Shells
	Z3TCAP
	Secure System
	Index

